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Abstract
Using the operator approach we reexamine the two-dimensional model
describing a massive Fermi field interacting via derivative couplings with two
massless Bose fields, one scalar and the other pseudoscalar. Performing a
canonical transformation on the Bose field algebra, the Fermi field operator
is written in terms of the Mandelstam soliton operator and the derivative-
coupling (DC) model is mapped into the massive Thirring model with two
vector-current–scalar-derivative interactions (Schroer–Thirring model). The
DC model with massless fermions can be mapped into the massless Rothe–
Stamatescu model with a Thirring interaction (massless Rothe–Stamatescu–
Thirring model). Within the present approach the weak equivalence between
the fermionic sector of the DC model and the massive Thirring model is
exhibited compactly.

PACS numbers: 11.15.Ex, 11.15.Tk

1. Introduction

In the past two-dimensional derivative coupling (DC) models have been the subjects of various
investigations within different approaches [1–9]. The equivalence between the massless
Thirring model and the DC model describing fermions interacting with two massless Bose
fields, one scalar and the other pseudoscalar, via derivative couplings has been discussed in
[6–8]. For a certain choice of the coupling parameters, the equivalence between the fermionic
sector of the DC model and the Thirring model is established in a weak form between the
fermionic Green’s functions of the corresponding models. The weak equivalence only works
under the expense of introducing opposite metric quantization for the bosonic fields [7, 8], or
by considering one derivative-coupling term with an imaginary coupling parameter [6]. Under
these assumptions the fermionic Green’s functions of the DC model are mapped into those of
the Thirring model obtained with Klaiber’s and Johnson’s solutions [10]. As a matter of fact,
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this is the only way under which the degrees of freedom in the two models can be artificially
matched.

In [7] the connection between the two models is analysed within the operator formalism
by comparing the corresponding operator solutions. In order to establish a correspondence
between the operator solution of the massless Thirring model and the DC model, the Bose
fields are considered with opposite metric and a combination of the original three bosonic
degrees of freedom is introduced to define two new bosonic fields. After redefining the Bose
fields, the operator solution is given in terms of both a ‘spurious’ field and the Thirring field
operator. However, the artifice employed in [7] by introducing a Bose field redefinition to
reduce the number of degrees of freedom is meaningless for the DC model with massive
fermions, since it presupposes that the bosonic fields are free and massless. For massive
fermions, the Bose field algebra contains two sine-Gordon-like pseudoscalar fields and a free
massless scalar field. The field redefinition used in [7] mixes these three degrees of freedom
to define the sine-Gordon soliton field and thus spoils the mass operator.

In [8] the DC model with massless fermions was analysed using the functional integral
approach. The equivalence between the fermionic two-point functions of the DC model and
the Thirring model is established with an appropriate relation between the coupling parameters
of the two models. A one-to-one mapping between the operator solutions of the DC model and
the massless Thirring model is established by imposing opposite metric quantization for the
Bose fields and a relation between the coupling parameters of the two models. However, the
equivalence established in [8] only works for massless fermions. In [6], the weak equivalence
between the Thirring model and the DC model has been used to investigate the ultraviolet
divergences and renormalizability in mass perturbation in the Thirring model.

Recently, in order to obtain a clear understanding of the actual role played by the fermionic
quartic-self-interaction in the DC models, the model describing a massless pseudoscalar field
interacting via axial-current-pseudoscalar-derivative coupling with massive fermions has
been discussed in [11] using the operator approach. This model corresponds to the Rothe–
Stamatescu model [2] in the zero mass limit for the pseudoscalar field when modified to include
a mass term for the Fermi field (modified Rothe–Stamatescu model (MRS model)). It was shown
that the presence of the Thirring interaction is an intrinsic property of the MRS model. The
Thirring interaction is exhibited compactly by performing a canonical transformation on the
Bose fields. The operator solution for the quantum equations of motion is written in terms of
the Mandelstam Fermi field operator of the Thirring model interacting with a scalar field via
vector-current-derivative coupling (Schroer–Thirring model). The vector current is mapped
into the Thirring current, in such a way that the charge sectors of the MRS model are mapped
into the charge sectors of the Thirring model. In this way, the bosonized mass operator of the
DC model is mapped into the mass operator of the Thirring model. The complete bosonization
of the model is performed by computing the composite operators in the bosonized quantum
Hamiltonian as the leading operators in the Wilson short distance expansions [11].

Notwithstanding the results on the weak equivalence between the DC model and the
Thirring model, from our point of view, several algebraic and structural aspects of this
equivalence, as proposed in [6–8], still remain obscure and the underneath property of the
DC model which enables the claimed correspondence has never been clearly displayed within
the operator formulation. A demonstration at the operator level that exhibits compactly the
Thirring interaction behind the DC model has never been furnished and a clear understanding
of this weak equivalence within the operator formulation still remains lacking in the literature.
One of the purposes of this work is to fill this gap.

In this paper, we shall generalize the presentation of [11] and re-analyse the DC model
using the operator approach. The DC model corresponds to the generalization of the model
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considered in [11] including a new degree of freedom of the massless scalar field interacting
with the massive Fermi field via vector-current–scalar-derivative interaction. We show that
the DC model is equivalent to the massive Thirring model with two vector-current-derivative
couplings (Schroer–Thirring model). The equivalence between the DC model and the Schroer–
Thirring model is established at the operator level without imposing conditions neither on the
nature of the bosonic fields, nor on the coupling parameters. Following a different approach
to those employed in [7, 8], the hidden Thirring interaction in the DC model is displayed
by performing a canonical transformation on the Bose field algebra. The operator solution
for the quantum equations of motion of the DC model corresponds to the Mandelstam Fermi
field operator of the Thirring model interacting with two free bosonic scalar fields via vector-
current-derivative couplings. The Thirring interaction is not affected by the introduction of
the vector-current–scalar-derivative coupling corresponding to the Schroer model [1]. The
Thirring interaction is an intrinsic property of the massless RS model [11]. The limit of
the zero coupling parameter is well defined and the Schroer model [1], as well as the
Rothe–Stamatescu model [2], is correctly recovered. The weak equivalence between the
fermionic sector of the DC model and the Thirring model is established for certain values of
the coupling parameters. Within the present approach the weak equivalence between the two
models is exhibited compactly without artificially reducing the number of bosonic degrees of
freedom.

The paper is organized as follows. In section 2 we present the operator formulation
for the DC model and the equivalence with the Schroer–Thirring model is established. In
section 3, we discuss the weak equivalence between the DC model and the massive Thirring
model. Contrary to what is done in [7], the correspondence between the fermionic Wightman
functions of the two models is established without reducing the number of degrees of freedom
and is consistent with the introduction of the mass term for the Fermi field. In section 4 we
discuss the DC model with massless fermions and its connection with the massless Rothe–
Stamatescu model with a Thirring interaction (massless Rothe–Stamatescu–Thirring model).
The conclusion is presented in section 5.

2. Operator solution in terms of the Thirring field

The classical Lagrangian density defining the two-dimensional derivative-coupling model of
a massive Fermi field interacting with two massless Bose fields is given by [6–8]1

L(x) = ψ̄(x)(iγ µ∂µ − mo)ψ(x) + 1
2∂µη(x)∂µη(x) + 1

2∂µφ̃(x)∂µφ̃(x)

+ g(ψ̄(x)γ µψ(x))∂µη(x) + g̃(ψ̄(x)γ µγ 5ψ(x))∂µφ̃(x), (2.1)

where η(x) is a scalar field and φ̃(x) is a pseudoscalar field. Except by the presence of a
decoupled massless boson field, for g = 0 the model corresponds to the Rothe–Stamatescu
(RS) model [2] in the zero mass limit of the pseudoscalar field φ̃ and modified to include a
mass term for the fermion field (MRS model [11]), and for g̃ = 0 it corresponds to the Schroer

1 The conventions used are

γ 0 =
(

0 1
1 0

)
, γ 1 =

(
0 1
−1 0

)
, γ 5 = γ 0γ 1, ε01 = 1, γ µγ 5 = εµνγν .

g00 = −g11 = 1ε01 = ε10 = 1
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model [1]. The equations of motion defining the quantum theory are

(iγ µ∂µ − mo)ψ(x) = gN [γ µψ(x)∂µη(x)] + g̃N [γ µγ 5ψ(x)∂µφ̃(x)], (2.2)

�η(x) = −g∂µ

...(ψ̄(x)γ µψ(x))
... = 0, (2.3)

�φ̃(x) = −g̃∂µ

...(ψ̄(x)γ µγ 5ψ(x))
.... (2.4)

The notation
...(•)

... in equations (2.3) and (2.4) means that the current is computed as the leading
term in the Wilson short distance expansion [15] and the normal products in (2.2) are defined
by the symmetric limit [2, 14]

N [ψ(x)∂µ�(x)]
.= lim

ε→0

1
2 {∂µ�(x + ε)ψ(x) + ∂µ�(x − ε)ψ(x)}. (2.5)

Due to the conservation of the vector current in equation (2.3) the scalar field η is free
and massless. As a consequence of the axial-current-pseudoscalar derivative interaction,
for massive fermions (mo �= 0) the pseudoscalar field φ̃ does not remain free due to the
non-conservation of the axial current in equation (2.4),

� φ̃(x) = ig̃mo

...(ψ̄(x)γ 5ψ(x))
.... (2.6)

For massless Fermi fields the model described by the Lagrangian (2.1) is a scale invariant
theory with anomalous scaling dimension [2]. As in the standard Thirring model [12], in order
for the theory described by the Lagrangian (2.1) to have the model with a massless fermion as
the short distance fixed point, the scale dimension of the mass operator must be

Dψ̄ψ < 2. (2.7)

In what follows the mass term should be understood as a perturbation in the scale invariant
model [11].

The operator solution for the quantum equations of motion is given in terms of Wick-
ordered exponentials [2, 7, 14],

ψ(x) = Z− 1
2

ψ : ei[gη(x)+g̃γ 5φ̃(x)] : ψ(0)(x), (2.8)

where Zψ is a wavefunction renormalization constant [2, 14] and ψ(0)(x) is the free massive
Fermi field,

(iγ µ∂µ − mo)ψ
(0)(x) = 0. (2.9)

The bosonized expression for the free massive Fermi field is given by the Mandelstam field
operator,

ψ(0)(x) =
( µ

2π

)1/2
e−i π

4 γ 5
: exp

(
i
√

π

{
γ 5ϕ̃(x) +

∫ ∞

x1
∂0ϕ̃(x0, z1) dz1

})
:, (2.10)

where µ is an infrared regulator reminiscent of the free massless theory. For mo = 0, use can
be made of the fact that

εµν∂
νϕ̃ = ∂µϕ. (2.11)

The meaning of the notation :(•): in the field operators is that the Wick ordering is performed
by a point-splitting limit in which the singularities subtracted are of the free theory. In this
way, the Wilson short distance expansions are performed using the two-point function of the
free massless scalar field [14]

[�(+)(x),�(−)(0)]x≈0 = − 1

4π
ln{−µ2(x2 + iεx0)}. (2.12)
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We shall ignore the infrared problems of the two-dimensional massless free scalar field since
the selection rules carried by the Wick-ordered exponentials ensure the construction of a
positive metric Hilbert subspace [12, 13] for the fermionic sector of the model.

The vector current is computed with the regularized point-splitting limit procedure

Jµ(x) = lim
ε→0

f (ε)

{
ψ̄(x + ε)γ µ

× exp

(
−i

∫ x+ε

x

[gγ 5εµν∂
νη(z) + g̃εµν∂

νφ̃(z)] dzµ

)
ψ(x) − V.E.V.

}
, (2.13)

with the wavefunction renormalization constant given by

Zψ(ε) = exp(g̃2[φ̃(+)(x + ε), φ̃(−)(x)] + g2[η(+)(x + ε), η(−)(x)]), (2.14)

and f (ε) is a suitable renormalization constant. The vector current is given by

Jµ(x) = j
µ

f (x) − g

π
∂µη(x) − g̃

π
εµν∂νφ̃(x), (2.15)

where j
µ

f (x) is the free fermion current,

j
µ

f (x) = − 1√
π

εµν∂νϕ̃(x), (2.16)

and the axial current is

J 5
µ(x) = εµνJ

ν(x) = − 1√
π

∂µϕ̃(x) − g

π
εµν∂

νη(x) − g̃

π
∂µφ̃(x). (2.17)

The bosonized form of the quantum equations of motion (2.3) and (2.4) are(
1 − g2

π

)
� η(x) = 0, (2.18)

(
1 − g̃2

π

)
� φ̃(x) = g̃√

π
� ϕ̃(x). (2.19)

The bosonized mass operator takes the form

...(ψ̄(x)ψ(x))
... = −µ

π
: cos(2

√
πϕ̃(x) + 2g̃φ̃(x)):, (2.20)

and the γ 5-invariance breaking term arising from the fermion mass is given by

...(ψ̄(x)γ 5ψ(x))
... = i

µ

π
: sin(2

√
πϕ̃(x) + 2g̃φ̃(x)):. (2.21)

For mo = 0, the axial current is conserved. In this case the pseudoscalar fields ϕ̃ and φ̃ are
both free and massless. Note that the scalar field η is a free massless field even for mo �= 0.
From the bosonized mass operator (2.20) and from the equation of motion (2.19) we see that
for mo �= 0 the fields ϕ̃ and φ̃ are sine-Gordon-like fields. The mass operator is independent of
the scalar (free) field η associated with the coupling parameter g of the vector-current–scalar-
derivative interaction (Schroer model) in the Lagrangian (2.1). In this way the mass operator
trivially commutes with the charge Qη defined by

Qη = − g

π

∫
∂0η(x) dx1. (2.22)
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In order to have canonical commutation relations for the fields φ̃ and η we perform the
field scaling

φ̃(x) =
(

1 − g̃2

π

)− 1
2

φ̃′(x), (2.23)

η(x) =
(

1 − g2

π

)− 1
2

η′(x), (2.24)

with g2 < π and g̃2 < π [11]. The mass operator (2.20), the vector current (2.15) and the
equations of motion (2.18)–(2.19) can be rewritten as

...(ψ̄(x)ψ(x))
... = −µ

π
: cos


2

√
πϕ̃(x) +

2g̃√
1 − g̃2

π

φ̃′(x)


 :, (2.25)

Jµ(x) = − g

π

1√
1 − g2

π

∂µη(x) − 1

π
εµν∂

ν


√

πϕ̃(x) +
g̃√

1 − g̃2

π

φ̃′(x)


 , (2.26)

�η′(x) = 0, (2.27)

�

√

πφ̃′(x) − g̃√
1 − g̃2

π

ϕ̃(x)


 = 0. (2.28)

The scaling dimension of the mass operator is given by

Dψ̄ψ = β̃2

4π
, (2.29)

with β̃2 defined by

β̃2 .= 4π

1 − g̃2

π

. (2.30)

Consistence with (2.7) also requires that g̃2 < π/2. The scaling dimension of the mass
operator is the same as that of the massive Thirring model with the coupling parameter g̃2. As
shown in [11], this is a consequence of the fact that the existence of the Thirring interaction
is an intrinsic property of the MRS model. In terms of the rescaled fields φ̃′ and η′, the Fermi
field operator can be rewritten as

ψ(x) = Z−1/2 : exp


i


 g√

1 − g2

π

η′(x) +
g̃√

1 − g̃2

π

γ 5φ̃′(x)





 : ψ(0)(x). (2.31)

For mo �= 0, the fields ϕ̃ and φ̃ are not free fields, whereas the field η is a massless free field.
From the bosonized expression for the mass operator (2.25) one sees that the sine-Gordon
soliton field should be a combination of the fields ϕ̃ and φ̃. In this way, on account of the
combinations between the pseudoscalar fields ϕ̃ and φ̃′ appearing in equations (2.25), (2.26)
and (2.28), following the procedure introduced in [11], let us perform the canonical field
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transformation,

δ̃�̃(x) = √
πϕ̃(x) +

g̃√
1 − g̃2

π

φ̃′(x), (2.32)

δ̃ξ̃ (x) = g̃√
1 − g̃2

π

ϕ̃(x) − √
πφ̃′(x). (2.33)

Imposing canonical commutation relations for the fields �̃ and ξ̃ , the parameter δ̃ is fixed as
being

δ̃2 = β̃2

4
= π

1 − g̃2

π

. (2.34)

The field transformation (2.32)–(2.33) is consistent with the introduction of the mass
perturbation since it does not mix the field η̃ with the fields ϕ̃ and φ̃. The fields (φ̃′, ϕ̃)

can be written in terms of the new fields (φ̃, ξ̃ ) as

φ̃′(x) = g̃√
π

�̃(x) −
√

π

δ̃
ξ̃ (x), (2.35)

ϕ̃(x) =
√

π

δ̃
�̃(x) +

g̃√
π

ξ̃(x). (2.36)

The equation of motion (2.28) is then reduced to

� ξ̃ (x) = 0. (2.37)

The vector current (2.26) can be rewritten as

Jµ(x) = ηµ(x) + J Th
µ (x), (2.38)

where

ηµ(x) = − g

π

1√
1 − g2

π

∂µη(x), (2.39)

and the Thirring current is given by

J Th
µ (x) = − β̃

2π
εµν∂

ν�̃(x). (2.40)

As in the case of the MRS model [11], the field ξ does not contribute to the fermionic current.
Using the fact that the field ξ is free and massless

εµν∂
ν ξ̃ (x) = ∂µξ(x), (2.41)

and using (2.35)–(2.36), the Fermi field (2.8) can be rewritten as

ψ(x) = Z− 1
2

ψ : exp


i


 g√

1 − g2

π

η′(x) + g̃ξ(x)





 : �(x), (2.42)

where � is the Fermi field operator of the massive Thirring model given by the Mandelstam
operator [16]

�(x) =
( µ

2π

)1/2
e−i π

4 γ 5
: exp

(
i

{
γ 5 β̃

2
�̃(x) + 2πβ̃−1

∫ ∞

x1
∂0�̃(x0, z1) dz1

})
:. (2.43)
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The bosonized mass operator (2.25) is now given by

...(ψ̄(x)ψ(x))
... ≡ ...(�̄(x)�(x))

... = −µ

π
: cos[β̃�̃(x)]:. (2.44)

The Thirring interaction is not affected by the introduction of the vector-current–scalar-
derivative coupling corresponding to the Schroer model (g-coupling), which implies that
the Thirring interaction is an intrinsic property of the massless RS model. The equation of
motion (2.2) for the Fermi field can be rewritten as

(iγ µ∂µ − mo)ψ(x) = g̃2N
[
γ µψ(x)J Th

µ (x)
]

+ N [γ µψ(x){g̃∂µξ(x) + g∂µη(x)}]. (2.45)

Equation (2.45) is the equation of motion for the massive Thirring model with two vector-
current–scalar-derivative couplings, i.e., the Schroer–Thirring model [11].

The Wightman functions of the Fermi field operator ψ(x) are those of the Fermi field
�(x) of the Thirring model clouded by the contributions of the free fields η′ and ξ ,

〈0|ψ(x1) · · · ψ(xn)ψ̄(y1) · · · ψ̄(yn)|0〉 = W(x1, . . . , xn, y1, . . . , yn)

×〈0|�(x1) · · · �(xn)�(y1) · · · �(yn)|0〉, (2.46)

where

W(x1, . . . , xn, y1, . . . , yn) = 〈0|
n∏

j=1

: exp


i


 g√

1 − g2

π

η′(xj ) + g̃ξ(xj )







× :
n∏

k=1

: exp


−i


 g√

1 − g2

π

η′(yk) + g̃ξ(yk)





 : |0〉. (2.47)

For g = 0, we obtain from (2.46) the Wightman functions of the Fermi field of the MRS
model [11] and for g̃ = 0 (β̃2 = 4π) the Wightman functions of the Schroer model [1] are
recovered.

3. Weak equivalence of the DC model with the Thirring model

On account of equation (2.46), a one-to-one mapping between the fermionic Wightman
functions of the DC model and those of the massive Thirring model can be established
by imposing that the Wick-ordered exponential of the free Bose field combination,

�(x) = gη(x) + g̃ξ(x), (3.1)

generates infinitely delocalized states,

W(x1, . . . , xn, y1, . . . , yn) = 1. (3.2)

The set of fields {φ̃, η, ψ} constitutes the intrinsic mathematical structure of the model
and generates the intrinsic local field algebra 
 defining the model. The metric quantization
for these fields must emerge as a consequence of a structural algebraic condition intrinsic to
the model. One may by a ‘tour de force’ obtain the weak equivalence between the DC model
and the Thirring model by using the artifice of impose opposite metric quantization for the
fields η and ξ . Of course, this means that we start from the beginning with the kinetic term
for the field η in the Lagrangian (2.1) with a minus sign. In this case the equation of motion
(2.18) is replaced by(

−1 − g2

π

)
� η(x) = 0. (3.3)
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The canonical field η′ is obtained after performing the field scaling

η′(x) =
(

1 +
g2

π

)1/2

η(x), (3.4)

such that

〈0|η′(x)η′(y)|0〉 = −〈0|ξ(x)ξ(y)|0〉. (3.5)

The Fermi field operator (2.42) can be rewritten as

ψ(x) = ω(x)�(x), (3.6)

where

ω(x) =: ei�(x) :=: exp


i


g̃ξ(x) +

g√
1 + g2

π

η(x)





 :. (3.7)

The operator �(x) would commute with itself,

[�(x),�(y)] = 0, ∀(x, y), (3.8)

provided that the coupling parameters g and g̃ are not independent and being related by(
1 − g̃2

π

) (
1 +

g2

π

)
= 1. (3.9)

Relation (3.9) between the coupling parameters is similar to one of the relations obtained in
[7]2. Condition (3.9) implies that

g2

π
= β̃2

4π
− 1. (3.10)

Under these assumptions the exponential operator ω(x) by itself generates constant Wightman
functions. Since the operator ω(x) commutes with itself and also commutes with the Thirring
field �, the general Wightman functions generated by the Fermi field (3.6) are isomorphic to
those generated by the Thirring field.

The Hilbert space of the standard DC model, as defined from the Lagrangian (2.1), is
a representation of the local field algebra 
, generated by the intrinsic fields {φ̃, η, ψ̄, ψ} ≡
{�̃, η, ξ},

H = 
|0〉. (3.11)

In the modified model, in which we assign negative metric quantization for the field η, the
Hilbert space of states is a representation of the field algebra 
′, i.e., H′ = 
′|0〉. The operator
ω(x) does not commute with the vector current Jµ ∈ 
′, given by (2.38), and thus carries the
charge Qη. This implies that the operator ω(x) does not reduce to the identity in the Hilbert
space H′. It is the identity operator only in a proper subspace of states H′

Th ⊂ H′ defined by
the set of Wightman functions of the Fermi field operator ψ . In the Hilbert subspace H′

Th, the
position independence of the operator ω(x) can be expressed in the weak form as

〈0|ω(x1) · · · ω(x�)ω(x ′
1) · · · ω(x ′

�)ψ(y1) · · · ψ(yn)ψ̄(z1) · · · ψ̄(zn)|0〉
= 〈0|�(y1) · · · �(yn)�̄(z1) · · · �̄(zn)|0〉. (3.12)

2 A similar expression for the Fermi field in terms of the Mandelstam operator was obtained in [7]. In this case the
‘spurion’ field σ that generates constant Wightman functions is defined in terms of a combination of the three fields
ϕ̃, φ̃ and η̃. However, since in the model with massive fermions the fields ϕ̃ and φ̃ are sine-Gordon fields and η̃

remains free and massless, the field redefinition used in [7] becomes meaningless. The coupling parameter relation
(3.9) is obtained in [7] with the field φ̃ quantized with negative metric and for β̃2 < 4π .
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Since the Bose fields η and ξ belong to the field algebra 
′, one can define in H′ the Thirring
field,

�(x) = ψ(x)ω−1(x), (3.13)

and the Thirring current,

J µ

Th(x) = Jµ(x) − ηµ(x), (3.14)

such that the Hilbert subspace H′
Th is generated from the field subalgebra 
′

Th

{
�,J µ

Th

} ⊂

′{ψ, η, ξ}. In the standard DC model, as defined from the Lagrangian (2.1), the weak
equivalence with the Thirring model cannot be established in terms of the field operators
defining the intrinsic local field algebra 
.

4. DC model with massless fermions: equivalence with the massless
Rothe–Stamatescu–Thirring model

In this section we shall consider the connection between the DC model with massless fermions
and the massless Thirring model with the coupling parameter g. To this end we shall consider an
alternative approach by introducing a canonical field transformation which only has meaning
for the DC model with massless fermions. To begin with, let us consider the operator
solution (2.8) for mo = 0. Since in this case the field ϕ̃ is free and massless, using that

ϕ(x) =
∫ ∞

x1
∂0ϕ̃(x0, z1) dz1, (4.1)

we can write the Fermi field as

ψ(x) =
( µ

2π

)1/2
: exp


i


 g√

1 − g2

π

η′(x) + γ 5 g̃√
1 − g̃2

π

φ̃′(x)







× :: exp(i
√

π [γ 5ϕ̃(x) + ϕ(x)]):, (4.2)

and the vector current (2.15) can be rewritten as

Jµ(x) = φµ(x) − 1

π
∂µ


√

πϕ(x) +
g√

1 − g2

π

η′(x)


 , (4.3)

where

φµ(x) = − 1

π

g̃√
1 − g̃2

π

εµν∂
νφ̃′(x). (4.4)

Let us now perform a canonical transformation on the free massless scalar fields η′ and ϕ

depending on the coupling parameter g,

δ�(x) = √
πϕ(x) +

g√
1 − g2

π

η′(x), (4.5)

δζ(x) = g√
1 − g2

π

ϕ(x) − √
πη′(x), (4.6)

with

δ2 = π

1 − g2

π

. (4.7)
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The Fermi field operator (4.2) can be rewritten as

ψ(x) = : exp


iγ 5


gζ̃ (x) +

g̃√
1 − g̃2

π

φ̃′(x)





 : �(x), (4.8)

where �(x) is the Fermi field operator of the massless Thirring model

�(x) =: exp

(
i
β

2
γ 5�̃(x) + i

2π

β
�(x)

)
: (4.9)

with
4π

β2
= 1

1 − g2

π

. (4.10)

The vector current (4.3) is given by

Jµ(x) = φµ(x) + JTh
µ (x), (4.11)

where the Thirring current is

JTh
µ (x) = − 2

β
εµν∂

ν�̃(x). (4.12)

The field ζ(x) does not contribute to the fermionic current. For g̃ = 0, the Fermi field (4.8)
corresponds to the operator solution of the massless Rothe–Stamatescu model with a Thirring
interaction (massless Rothe–Stamatescu–Thirring model). The equation of motion (2.2) is
now given by

iγ µ∂µψ(x) = g2N
[
γ µψ(x)JTh

µ (x)
]

+ N [γ µγ 5ψ(x){g∂µζ̃ (x) + g̃∂µφ̃(x)}]. (4.13)

It should be stressed that the field transformation defined by equations (4.5)–(4.6) only
can be implemented in the model with massless fermions, since in equation (4.3) use was
made of the fact that the field ϕ is a free massless field. For mo = 0, due to the conservation
of both vector and axial currents, the fields η, ϕ and φ are free and massless. For massive
fermions the field ϕ̃ is a sine-Gordon-like field, whereas the field η remains free and massless
and in this case the transformation (4.5)–(4.6) is meaningless since it mixes a free field
with an interacting one. As a matter of fact, the transformation (4.5)–(4.6) spoils the mass
operator. For massless fermions one can rewrite the transformation (4.5)–(4.6) in terms of the
corresponding pseudoscalar fields and the mass operator can be written as

: cos(2
√

πϕ̃(x) + 2̃gφ̃(x)) :=: cos(β�̃(x) + 2gζ̃ (x) + 2g̃φ̃(x)) : . (4.14)

This explains why the field redefinition introduced in [7] becomes meaningless for massive
fermions.

4.1. Weak equivalence with the massless Thirring model

The weak equivalence with the massless Thirring model can be established by considering the
field φ quantized with negative metric such that

φ̃′ =
√

1 +
g̃

π
φ̃. (4.15)

The Fermi field operator is given in terms of Wick exponential of the field combination

θ̃ (x) = gζ̃ (x) +
g̃√

1 + g̃

π

φ̃′(x) (4.16)
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as follows:

ψ(x) = : eiγ 5 θ̃ (x) : �(x). (4.17)

The Wick-ordered exponential of the field θ̃ (x) generates constant Wightman functions
provided that the coupling constants are related by(

1 +
g̃2

π

) (
1 − g2

π

)
= 1, (4.18)

implying that3

g̃2

π
= 4π

β2
− 1. (4.19)

In this case the Wightman functions of the Fermi field (4.8) are isomorphic to those of the
massless Thirring model with the coupling constant g.

5. Conclusion

The presence of a hidden Thirring interaction in the DC model is an intrinsic property of the
model independent of any relation between the coupling parameters g and g̃. The DC model
is isomorphic to the Schroer model with a Thirring interaction (Schroer–Thirring model). The
weak equivalence with the Thirring model can be established without reducing the number
of degrees of freedom. This is achieved by starting from a modified DC model in which the
bosonic fields enter with opposite metric. In this modified DC model the general Wightman
functions of the Fermi field operator are isomorphic to those of the Thirring model. For
massless fermions the DC model can be mapped into the massless Rothe–Stamatescu–Thirring
model.
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